
cuTensor-TT/TR: High Performance Third-order Tensor-Train and Tensor-Ring
Decompositions on GPUs

Hao Hong1 , Tao Zhang1,3,∗ , Xiao-Yang Liu2

1School of Computer Engineering and Science, Shanghai University, Shanghai, China
2Department of Electrical Engineering, Columbia University, USA

3Shanghai Institute for Advanced Communication and Data Science, Shanghai, China
honghao@shu.edu.cn, taozhang@shu.edu.cn, xl2427@columbia.edu

Abstract
Tensor decompositions are widely used for process-

ing multi-dimensional data in machine learning. How-
ever, the time and space cost of tensor decompositions
increases rapidly with the size and dimension of tensors.
In this paper, we propose high performance GPU imple-
mentations for the third-order tensor-train (TT) decom-
position and tensor-ring (TR) decomposition. First, we
propose to utilize highly-parallel Jacobi-based singular
value decomposition (SVD) on GPU. Second, we paral-
lelize diagonal matrix and matrix multiplication on GPU.
Thirdly, we optimize the transfer and memory access of
intermediate variables to further improve performance.
On a Tesla V100 GPU, we tested tensors up to 1,200 ×
1,200 × 1,200. Compared with the basic GPU imple-
mentations, the proposed GPU implementations of TT
and TR decompositions achieve up to 6.67× and 6.36×
speedups, respectively.

Keywords GPU, tensor-train decomposition, tensor-
ring decomposition, Jacobi SVD

1 Introduction
Tensor decompositions are extensions of matrix factorization
to high dimensions. They are powerful in analyzing big data,
such as social networks, finance and quantum physics [2] [4].
Tensor decompositions have become basic tools in data min-
ing [1], computer vision [3] [5] and deep learning [10] [9].
With the ever-growing demands of efficient big data analyt-
ics, developing efficient tensor decompositions becomes a
critical task. Exiting works proposed CPU-based tensor-train
(TT) and tensor-ring (TR) decompositions [7] [11], which did
not fully exploit the parallelism of tensor operations, mak-
ing them impractical for processing big data sets in machine
learning.

In this paper, we propose high performance GPU imple-
mentations for third-order TT and TR decompositions. We
parallelize low-rank dense tensor TT and TR decompositions
on many-core GPU. Evaluation results show that the GPU-
based TT and TR decompositions achieve good performance.

Our major contributions are summarized as follows.
• We implement third-order TT and TR decompositions

on GPU, which achieve high performance and the same
∗Corresponding author: Tao Zhang. Tao Zhang is supported by

Science and Technology Committee of Shanghai Municipality under
grant No. 19511121002 and No. 19DZ2252600.

Figure 1: A third-order tensor-train decomposition.

accuracy as CPU. To the best of our knowledge, this is
the first work for GPU-based high-performance TT and
TR decompositions.
• We propose optimization strategies, including a faster

and more efficient tensor access in GPU memory and an
optimized parallel diagonal matrix and matrix multipli-
cation on GPU. We reduce GPU memory consumption
and avoid the operations of tensor matrixing and vector
diagonalization to improve performance.
• We evaluate the performance of TT and TR decompo-

sitions with experiments on a Tesla V100 GPU. The
speedup of the TT decomposition is up to 6.67× over
a GPU baseline. The speedup of the TR decomposition
is up to 6.36× over a GPU baseline.

2 Third-order TT and TR Decompositions
We briefly describe third-order tensor-train (TT) and tensor-
ring (TR) decomposition algorithms.

2.1 Notions and Operations
We use boldface lowercase letters a ∈ Rn to denote vectors,
boldface uppercase letters A ∈ Rn1×n2 for matrices and up-
percase calligraphic letters A ∈ Rn1×n2×n3 for third-order
tensors. We use ◦ to denote the tensor contraction operation.

2.2 Third-order TT Decomposition
A TT decomposition [7], as shown in Fig. 1, expresses a
third-order tensor A ∈ Rn1×n2×n3 as contractions of three
core tensors:

A = G(1) ◦ G(2) ◦ G(3),
where G(k) ∈ Rrk−1×nk×rk is the k-th core tensor. The
auxiliary indices [r0, r1, r2, r3] are the tensor-train ranks (TT-
ranks), and r0 = r3 = 1 for third-order tensors. Thus, G(1)
and G(3) are matrices and G(2) is a third-order tensor.

Figure 2: An illustration of TT and TR decompositions for a d-th order tensor.

Algorithm 1 Third-order Tensor-Train Decomposition [7]

Input: Tensor A ∈ Rn1×n2×n3 , pre-specified accuracy ε.
Output: Cores G(1),G(2),G(3), r0, r1, r2, r3 ∈ N+.

1: C(0) = A, r0 = r1 = r2 = r3 = 1,
2: for k = 1 to 2 do
3: C = reshape(C(k−1), [rk−1nk,

∏3
i=k+1 ni]),

4: Compute SVD: C = USV T , and s = diag(S),
5: δ = ε√

3−1‖s‖2, γ = 0, rk =](s),
6: while γ ≤ δ do
7: γ = γ + s2rk , rk = rk − 1,
8: end while
9: rk = rk + 1, U = U(:, 1 : rk),

S = S(1 : rk, 1 : rk), V
T = V T (1 : rk, :),

10: G(k) = reshape(U , [rk−1, nk, rk]),
11: C(k) = reshape(SV T , [rk,

∏3
i=k+1 ni, rk+1]),

12: end for
13: G(3) = C(2).

The TT decomposition is a special case of tensor net-
work and can be represented by graphical model [8], as
shown in Fig. 2. The connection “leg” between two cir-
cles represents the contraction operation of two tensors.
Through the contraction of every small tensors, we can
get the original tensor A. Alg. 1 describes the proce-
dures of the third-order TT decomposition [7]. The C =

reshape(C(k−1), [rk−1nk,
∏3

i=k+1 ni]) operation changes the
tensor C(k−1) to a matrix C with rk−1nk rows and∏3

i=k+1 ni columns. The G(k) = reshape(U , [rk−1, nk, rk])
operation changes the matrix U to a tensor G(k) with rk−1
rows, nk columns, and rk in the third direction.

2.3 Third-order TR Decomposition
A TR decomposition [11], as shown in Fig. 2, represents

a third-order tensor A ∈ Rn1×n2×n3 with three third-order
latent tensors G(k) ∈ Rrk×nk×rk+1 , k = 1, 2, 3:

A = G(1) ◦ G(2) ◦ G(3),

where we also calculate the contraction between G(1) and
G(3). Auxiliary indices [r1, r2, r3] are the tensor-ring ranks

Algorithm 2 Third-order Tensor-Ring Decomposition [11]

Input: Tensor A ∈ Rn1×n2×n3 , pre-specified accuracy ε.
Output: Cores G(1),G(2),G(3), r0, r1, r2, r3 ∈ N+.

1: C(0) = A,m = r0 = r1 = r2 = r3 = 1,
2: Choose the first mode as the start point,

C = reshape(C(0), [r0n1, n2n3]),
3: C = USV T , s = diag(S),
4: δ = ε√

3−1‖s‖2, γ = 0, m =](s),
5: while γ ≤ δ do
6: γ = γ + s2m,m = m− 1,
7: end while
8: m = m+ 1, U = U(:, 1 : m),

S = S(1 : m, 1 : m), V T = V T (1 : m, :),
9: Split ranks r0, r1 by

minr0,r1 |r0 − r1|, s.t. r0r1 = m,
10: G(1) = permute(reshape(U , [n1, r0, r1]), [2, 1, 3]),
11: C = permute(reshape(SV T , [r0, r1, n2n3]), [2, 3, 1]),
12: C = reshape(C, [r1n2, n3r0]),
13: Repeat Line 3 to 8, and set r2 = m, r3 = r0
14: G(2) = reshape(U , [r1, n2, r2]),
15: G(3) = reshape(SV T , [r2, n3, r3]).

(TR-ranks). Because of the trace characteristic of TR-format
tensor, r4 = r1, which leads to the main difference between
the TT decomposition and the TR decomposition. The TR
decomposition is also a special case of tensor networks.

Alg. 2 describes the procedures of the third-order TR de-
composition. Because of the ring-shaped feature, the third-
order TR decomposition needs to choose a start point. The
C = permute(reshape(SV T , [r1, r2, n2n3]), [2, 3, 1]) opera-
tion transposes the tensor dimensions from [r1, r2, n2n3] to
[r2, n2n3, r1].

3 Efficient Third-order TT and TR
Decompositions on GPU

3.1 Parallelization Schemes
For third-order TT and TR decompositions in Alg. 1 and Alg.
2, we use the following parallel optimizations.

Parallel Jacobi SVD
The most time consuming step is matrix SVD, which occu-
pies about 68% running time. We find that conventional SVD
possesses low parallelism, thus is not suitable for GPU. In-
stead, we use the Jacobi SVD method that has much higher
parallelism and matches the computing characteristics of
GPU. In the Jacobi SVD method, we need to specify an ac-
curacy and an iteration number. In our experiment, when the
calculation and storage precision are single precision, we set
the accuracy 10e-8 and the maximum iteration 100 to get the
smallest error. If the error between restored matrix and orig-
inal matrix meets the preset threshold or the iteration reaches
the maximum iteration number, the algorithm terminates.

Parallel Diagonal Matrix Times Matrix
In the Line 11 of Alg. 1 and the Lines 11 and 15 of Alg. 2,
there are diagonal matrix and matrix multiplications and com-
puting costs increases quickly with the increase of the size of
matrices. Because of the diagonal matrix only having values
on the diagonal, there is useless calculation in the process of
diagonal matrix and matrix multiplication. To accelerate, we
replace with the multiplication of corresponding lines of two
matrices:

SV T = parallel(sk · V T
k),

where sk represents the k-th value in S on the diagonal and
V T
k represents the k-th row of V T . Through this optimiza-

tion, we also eliminate the diagonalization of matrix on GPU.

Parallel Element-wise Product
In the Lines 6 to 9 of Alg. 1 and the Lines 5 to 7 of Alg. 2, we
extract the parallelizable part. We calculate the element wise
product of vector s · s in parallel:

parallel(s(0)m−k+1 = sk · sk), 1 ≤ k ≤ m,

where m =](s). Then we use s(0) to calculate the rk.

3.2 Optimizing Memory Access
Fig. 3 shows the layout of a tensor. The slices of a tensor are
stored contiguously and each slice is stored in column-major
layout. There are two reasons we use this kind of storage.
First, we design to meet requirement of bottom layer of two
CUDA libraries, cuBLAS and cuSOLVER. Secondly, we can
easily obtain the truncation part of mode-1 unfolding of ten-
sor and remove the overhead of tensor matrixing.

In the Line 11 of Alg. 1 and the Lines 11&15 of Alg. 2,
we directly calculate the front truncation part of the matrix
V T and vector s to reduce the computation and to eliminate
the truncation operations in the Line 9 of Alg. 1 and the Line
8 of Alg. 2. In the Lines 10&11 of Alg. 2, we propose
the direct transformation in one-way array to replace the per-
muting of tensor. With this memory access strategy, we can
eliminate reshape operations in these two Algorithms. Mean-
while, in these two algorithms, there are many intermediate
variables that take up many space to affect subsequent calcu-
lations. Thus, we allocate and deallocate intermediate data
structures dynamically and reuse allocated data structures in
GPU memory, which effectively reduces memory consump-
tion.

Figure 3: Tensors are stored as an 1D array in memory.

3.3 Efficient Data Transfer
TT and TR decomposition algorithms are data-intensive
and their input and output data increase rapidly with the
size of tensors, leading to a significant time overhead
for transferring data between the GPU and CPU. We
combine the cores G1,G2,G3 into a new one-dimensional
array c. Meanwhile, we use [n1, n2, n3] to store di-
mensions of tensor and [r0, r1, r2, r3] to store TT-ranks
and TR-ranks. The k-th core can be obtained by Gk =

reshape(c(
∏k−1

j=1 rjnjrj+1,
∏k

j=1 rjnjrj+1), [rk−1, nk, rk]),

where c(
∏k−1

j=1 rjnjrj+1,
∏k

j=1 rjnjrj+1) gets the parame-

ters from
∏k−1

j=1 rjnjrj+1 to
∏k

j=1 rjnjrj+1 of c.

4 Performance Evaluation
We evaluate the performance on a server that has two dual In-
tel Xeon E5-2640 V4 CPUs, each having 10 cores @2.4 GHz
supporting 20 harware threads with hyperthreading. There
is one Tesla V100 GPU with 5, 120 CUDA cores @1.53 GHz
and 32GB device memory. There are 80 GB DDR4 memories
@2.133 GHz on the server. We are interest in the speedups of
the Tesla V100 GPU over two dual 10-core CPUs, defined as
(CPU running time)/(GPU running time). For error rate, we
measure the relative square error (RSE), which is defined as
RSE = ‖G(1)◦G(2)◦G(3)−A‖F /‖A‖F . We construct a low
rank tensor of rank 50 by multiplication of two matrices and
then tensor product with with a matrix. We set the accuracy
10e-8 and the max iteration times 100 of the Jacobi SVD and
prespecified ε = 10e-6 under single precision.

Fig. 4 shows the running time and speedups of the third-
order TT decomposition on GPU and CPU for different ten-
sor sizes. The tensor size varies from 100 × 100 × 100 to
1, 200 × 1, 200 × 1, 200. The CPU implementation used
MATLAB code from [7]. The maximum tensor size can be
supported on the GPU is 1, 200 × 1, 200 × 1, 200 due to
the GPU memory size. Compared to the CPU implemen-
tation, the GPU baseline achieves an average of 3.50× and
up to 6.10× speedups. When the size of tensor comes over
500 × 500 × 500, speedups of the GPU baseline get smaller
because of the increased cost of low parallelism SVD. Com-
pared to the CPU implementation, the optimized GPU im-
plementation achieves an average 14.25× and up to 24.80×
speedups. The RSE reaches the 10e-4 level on GPU and CPU.
When the size of the tensor is bigger than 500 × 500 × 500,
the speedups has an overall upward trend.

Figure 4: Running time and speedups of third-order TT decomposi-
tion on Tesla V100 GPU and two 10-core CPUs.

Fig. 5 shows the running time and speedups of the third-
order TR decomposition on GPU and CPU with different
tensor sizes and r1 = 2. The CPU implementation used
MATLAB code from [6]. Compared to the CPU implemen-
tation, the GPU baseline achieves an average of 3.07× and
up to 4.31× speedups and the optimized GPU implementa-
tion achieves an average 11.35× and up to 21.77× speedups.
The RSE reaches the 10e-4 level on GPU and CPU. When the
tensor size is 100 × 100 × 100, the speedups is less than one
because of the iterations cost and data transfer. The speedups
keep increasing with the growing of tensor size.

5 Conclusions
In this paper, we have proposed high performance GPU im-
plementations for third-order TT and TR decompositions. We
propose an efficient memory access in GPU memory and an
optimized parallel diagonal matrix and matrix multiplication
on GPU. We utilize the highly-parallel Jacobi-based SVD
to match the SIMT GPU architectures. Through the exper-
iments, we obtain up to 6.67× and 6.36× speedups for third-
order TT and TR decompositions, respectively. Our future
work will focus on higher-order TT and TR decompositions
on multiple GPUs and we will incorporate TT and TR decom-
positions into the cuTensor library [9].

References
[1] Yuanzhe Cai, Miao Zhang, Dijun Luo, Chris Ding, and

Sharma Chakravarthy. Low-order tensor decomposi-
tions for social tagging recommendation. In Proceed-
ings of the fourth ACM International Conference on
Web Search and Data Mining, pages 695–704, 2011.

[2] Andrzej Cichocki, Danilo Mandic, Lieven De Lath-
auwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa, and
Huy Anh Phan. Tensor decompositions for signal pro-
cessing applications: From two-way to multiway com-
ponent analysis. IEEE Signal Processing Magazine,
32(2):145–163, 2015.

Figure 5: Running time and speedups of third-order TR decomposi-
tion on Tesla V100 GPU and two 10-core CPUs.

[3] Xiaochen Han, Bo Wu, Zheng Shou, Xiao-Yang Liu,
Yimeng Zhang, and Linghe Kong. Tensor FISTA-Net
for real-time snapshot compressive imaging. In AAAI,
pages 10933–10940, 2020.

[4] Lili Huang, Xuan Wu, Wenze Shao, Hongyi Liu, Zhihui
Wei, and Liang Xiao. Color demosaicking via nonlo-
cal tensor representation. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1812–1816. IEEE, 2017.

[5] Jiawei Ma, Xiao-Yang Liu, Zheng Shou, and Xin
Yuan. Deep tensor ADMM-Net for snapshot compres-
sive imaging. In Proceedings of the IEEE International
Conference on Computer Vision, pages 10223–10232,
2019.

[6] Oscar Mickelin and Sertac Karaman. On algorithms
for and computing with the tensor ring decomposition,
2018, arXiv:1807.02513.

[7] Ivan V Oseledets. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5):2295–2317,
2011.

[8] Chase Roberts, Ashley Milsted, Martin Ganahl, Adam
Zalcman, Bruce Fontaine, Yijian Zou, Jack Hidary,
Guifre Vidal, and Stefan Leichenauer. Tensornetwork:
A library for physics and machine learning. arXiv
preprint arXiv:1905.01330, 2019.

[9] Tao Zhang, Xiao-Yang Liu, Xiaodong Wang, and An-
war Walid. cuTensor-Tubal: Efficient primitives for
tubal-rank tensor learning operations on gpus. IEEE
Trans. Parallel Distrib. Syst., 31(3):595–610, 2020.

[10] Yimeng Zhang, Xiao-Yang Liu, Bo Wu, and Anwar
Walid. Video synthesis via transform-based tensor neu-
ral networks. In ACM Multimedia, 2020.

[11] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang,
and Andrzej Cichocki. Tensor ring decomposition.
arXiv preprint arXiv:1606.05535, 2016.

	Introduction
	Third-order TT and TR Decompositions
	Notions and Operations
	Third-order TT Decomposition
	Third-order TR Decomposition

	Efficient Third-order TT and TR Decompositions on GPU
	Parallelization Schemes
	Parallel Jacobi SVD
	Parallel Diagonal Matrix Times Matrix
	Parallel Element-wise Product

	Optimizing Memory Access
	Efficient Data Transfer

	Performance Evaluation
	Conclusions

